Reduced Error Pruner¶
Module containing ReducedErrorPruner class.
-
class
pruneabletree.pruner_rep.
ReducedErrorPruner
(tree)[source]¶ Pruner for decision trees that uses the Reduced Error Pruning (REP) technique [1] [2].
Note that the given tree is modified in place. To keep a copy of the original, clone it first.
Parameters: - tree : Tree object
The underlying tree object of a DecisionTreeClassifier (e.g. clf.tree_).
See also
pruneabletree.prune.PruneableDecisionTreeClassifier
,pruneabletree.pruner_ebp.ErrorBasedPruner
References
[1] (1, 2) J. Ross Quinlan. Simplifying decision trees. International journal of man-machine studies, 27(3):221-234, 1987. [2] (1, 2) Tapio Elomaa and Matti Kaariainen. An analysis of reduced error pruning. Journal of Artificial Intelligence Research, 15:163-187, 2001. Methods
is_leaf
(node_id)Returns True if the given node is a leaf. leaf_prediction
(node_id)Returns the class index of that the node with the given ID would predict. num_actual_nodes
(tree)Returns the actual number of nodes in the given tree after pruning. num_instances
(node_id[, y_idx])Returns the number of instances in a given node. num_leaves
(tree)Returns the number of leaves. prune
(X_val, y_val)Prunes the given tree using the given validation set. to_leaf
(node_id, depths)Convert the node with the given ID to a leaf, pruning away its children. -
prune
(X_val, y_val)[source]¶ Prunes the given tree using the given validation set.
Parameters: - X_val : array-like or sparse matrix, shape = [n_samples, n_features]
The validation input samples. Internally, it will be converted to
dtype=np.float32
and if a sparse matrix is provided to a sparsecsc_matrix
.- y_val : array-like, shape = [n_samples] or [n_samples, n_outputs]
The target values (class labels) as integers or strings.