.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_iris_rep.py: ======================================================= Plot the decision surface of a pruneable tree using REP ======================================================= Plot the decision surface of a :class:`pruneabletree.prune.PruneableDecisionTreeClassifier` trained on pairs of features of the iris dataset. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. In this example, the tree is pruned using Reduced Error Pruning (REP). .. image:: /auto_examples/images/sphx_glr_plot_iris_rep_001.png :class: sphx-glr-single-img .. code-block:: python print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris from pruneabletree import PruneableDecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 def plot_surface(iris, prune_method): for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = PruneableDecisionTreeClassifier(prune=prune_method).fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show() # Load data iris = load_iris() # Create plots plot_surface(iris, prune_method='rep') **Total running time of the script:** ( 0 minutes 1.146 seconds) .. _sphx_glr_download_auto_examples_plot_iris_rep.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: plot_iris_rep.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_iris_rep.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_